Dynamic Harmonic Domain Transmission Line Modeling for Transients

J. Jesus Chavez, Abner Ramirez, and J. Luis Naredo

Abstract—Harmonics have become a relevant topic as the number of nonlinear elements and electronic devices connected to power systems is increasing constantly. This paper presents a methodology for the modeling of single-phase transmission lines interfaced with nonlinear loads. It is intended for transient analysis and special emphasis is put on the harmonic content of the propagating waveforms through the dynamic harmonic domain (DHD) technique.

Keywords: Dynamic harmonic domain, electromagnetic transients, harmonics, switching maneuvers, transmission line, time-varying systems.

I. INTRODUCTION

Traditionally, transmission lines are modeled either in the frequency domain or in the time domain, a partial list of important developments in this area is [1]-[9]. By using any of these models one can obtain voltage or current traveling waves as functions of time. Nevertheless, one could be interested in analyzing the harmonic content of such waves, especially when nonlinear loads or electronic devices are connected to the lines being analyzed. Moreover, the consideration of harmonics in a transmission line/nonlinear load system is desirable when assessing ferroresonance conditions [10].

In this paper we model the transmission line by the traveling wave approach combined with the Dynamic Harmonic Domain (DHD) technique [11]. The latter consists on representing a time-varying quantity by a Fourier series whose coefficients are allowed to vary slowly [12], [13].

Potential applications of the proposed technique are in the areas of power quality studies and of ferroresonance analysis. Power quality indices are calculated here to illustrate the application of the proposed methodology to the power quality area. The link between the HD and ferroresonance analysis can be seen in [14] and, since it is beyond the scope of the present work, it is relegated to a forthcoming paper.

Accounting for enough harmonics, the DHD technique permits to follow in a step-by-step fashion the voltage/current harmonics behavior with respect to time in a precise manner. This way, DHD avoids the well-known errors intrinsically involved in traditional techniques such as the Windowed Fast Fourier Transform (WFFT).

Although FFT-based methods are efficient in stationary conditions, they lose accuracy under time-varying conditions [15]. See [15]-[18] for a detailed analysis of such errors, i.e., leakage, picket-fence, etcetera.

The paper is organized as follows. In section II the basic definitions of the DHD technique are presented. Section III describes the DHD modeling of transmission lines, of nonlinear loads and of their interconnection. Numerical results are presented in Section IV.

II. DHD BASIC THEORY

A. Theory

Without loss of generality consider the Linear Time Periodic (LTP) system for the scalar case

\[\ddot{x} = a_p x + b_p u, \]
\[\dot{y} = c_p x + d_p u, \]

where subscript \(p \) stands for time-periodic; for instance \(a_p \) is defined as

\[a_p = a_0 e^{-jh_0 t} + \cdots + a_n e^{jh_0 t}, \]

with \(k \) representing the highest harmonic and \(\omega_0 \) the fundamental frequency. The state representation (1) is expressed in the DHD as

\[\dot{X} = (A-S)X + BU, \]
\[Y = CX + DU, \]

where the variables are now complex vectors with time-varying coefficients, e.g.,

\[X = [x_1(t) \cdots x_n(t) \cdots x_k(t)]^T, \]

where \(T \) denotes transpose, \(S \) is called the operational matrix of differentiation defined by [13], [19]

\[S = \text{diag}\{-j\omega_0, \cdots, -j\omega_n, 0, j\omega_n, \cdots, j\omega_0\}, \]

This work was supported by the National Council of Science and Technology (CONACYT-FOMIXJAL-51689) Mexico. J.J. Chavez and A. Ramirez are with CINVESTAV-Guadalajara, Mexico (e-mails: jchavez@gdl.cinvestav.mx, abner.ramirez@cts-design.com). J.L. Naredo is with CINVESTAV-Queretaro, Mexico (e-mail: jlnaredo@qro.cinvestav.mx).

Presented at the International Conference on Power Systems Transients (IPST’07) in Lyon, France on June 4-7, 2007.
and matrix A (as well as B, C and D) has Toeplitz structure

$$A = \begin{bmatrix}
a_0 & a_{-1} & \cdots & a_{-h} \\
a_1 & a_0 & \cdots & a_{-h} \\
\vdots & \vdots & \ddots & \vdots \\
a_h & a_{h-1} & \cdots & a_0
\end{bmatrix}. \tag{4c}$$

By comparing (1) and (3) one can observe that the LTP system has been transformed into a Linear Time Invariant (LTI) one through the DHD. Moreover, the steady state of the system is easily obtained by setting to zero the derivatives in (3), thus yielding

$$X = (S - A)^{-1} BU, \quad \text{(5a)}$$

$$Y = CX + DU, \quad \text{(5b)}$$

Hence, the evolution of the harmonic content, i.e., with respect to time, can be obtained from (3) and the corresponding instantaneous values are calculated by assembling a Fourier series as in (2).

B. Illustrative example

Consider the signal shown in Fig. 1 and given by

$$x(t) = \gamma [\cos(\omega_0 t) + 0.3 \cos(3 \omega_0 t + \pi/10) + 0.1 \cos(5 \omega_0 t + \pi/5)], \quad \text{(6a)}$$

where ω_0 is the power frequency in rad/s and $\gamma = 1 - 0.5 e^{-20}$. The corresponding harmonic vector (showing only the odd harmonics) is

$$X = \begin{bmatrix} x_{-5} \\ x_{-3} \\ x_{-1} \\ x_1 \\ x_3 \\ x_5 \end{bmatrix} = \begin{bmatrix} \gamma/2 \\ 0.1 e^{-j \pi/5} \\ 0.3 e^{-j \pi/10} \\ 0.1 e^{+j \pi/5} \end{bmatrix}. \quad \text{(6b)}$$

From (6b) one can notice that the harmonic coefficients are time dependent. This is shown in Fig. 2.

Additionally, for comparison purposes Fig. 2 presents the results yielded by the WFFT. For this example, the original signal given by (6a) has 1280 points and a sliding window with 128 points (sampling rate of 7.68 kHz) is used. In order to diminish the leakage error, each windowed data is multiplied by the Hanning window. Notice that the WFFT follows closely the exact values of the harmonics given by the DHD; the latter lacking the intrinsic errors of the former.

III. TRANSMISSION LINE-NONLINEAR LOAD IN THE DHD

A. Propagation Equations

Consider the reference directions for the transmission line depicted in Fig. 3. The relations between the incident current, I', and the reflected current, I'', in the frequency domain are

$$I''_m = H I'_m, \quad \text{(7a)}$$

$$I'_m = H I''_m, \quad \text{(7b)}$$

where H represents the propagation function [5]. On approximating H by rational functions [8] we can express (7b) as

$$I'_m = [C_1 (s - A)]^{-1} B_1 I''_m. \quad \text{(8a)}$$

In (8a) the set of poles (k poles), obtained from the rational fitting, are contained in the diagonal matrix A_1 of dimensions $k \times k$; the column vector B_1 ($k \times 1$) has all entries equal to 1 and the residues of the realization are contained in the row vector C_1 ($1 \times k$). From (8a) we define

$$X_1 = (s I - A_1)^{-1} B_1 I''_m. \quad \text{(8b)}$$
The corresponding state-space realization for (8b) becomes

\[\dot{x}_1 = A_1 x + B_1 i_m^r, \quad (8c) \]

Using a similar procedure for node \(m \), the state space realization for (7a) is straightforward to obtain. The state space realization for the two line nodes is thus

\[\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_1 \\ A_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ B_1 \end{bmatrix} \begin{bmatrix} i_m^r \end{bmatrix}, \quad (9a) \]

\[\begin{bmatrix} i_m^r \\ i_n^r \end{bmatrix} = \begin{bmatrix} C_1 \\ C_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad (9b) \]

In (9), the reflected currents \(i_m^r \) and \(i_n^r \) are calculated at time \(t-\tau \), being \(\tau \) the travel time. In the DHD, (9) becomes

\[\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} A_1 - S' \\ A_1 - S' \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} B_1 \Gamma \\ B_1 \Gamma \end{bmatrix} \begin{bmatrix} I_n^r \end{bmatrix}, \quad (10a) \]

\[\begin{bmatrix} I_n^r \\ I_n^r \end{bmatrix} = \begin{bmatrix} C_1 \\ C_1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}, \quad (10b) \]

Now, in (10) we have the following matrix definitions with corresponding dimensions shown inside round parenthesis:

\[A_i = \text{diag}\{a_1 I_{h}, a_2 I_{h}, \ldots, a_k I_{h}\} \quad (kh \times kh), \quad (11a) \]

\[S' = \text{diag}\{S, S, \ldots, S\} \quad (kh \times kh), \quad (11b) \]

\[B_i = [I_h I_h \ldots I_h]^T \quad (kh \times kh), \quad (11c) \]

\[C_i = [c_1 I_h c_2 I_h \ldots c_k I_h] \quad (h \times kh), \quad (11d) \]

\[\Gamma = \text{diag}\{e^{j\omega t}, \ldots, e^{j(\omega t + \tau)}, \ldots \} \quad (kh \times kh), \quad (11e) \]

In (11), \(I_s \) corresponds to the identity matrix of dimensions \(h \times h \) and the time delay is taken into account by

\[\Gamma = \text{diag}\{e^{j\omega t}, \ldots, e^{j(\omega t + \tau)}, \ldots \}. \quad (11f) \]

One can observe from (10) that the dimension of the dynamic system has been increased \(h \) times. Although the computational advantages of (10) compared to (9) are questionable, the former permits us to follow the dynamics of any harmonic along the observation time.

\[I_n \quad \rightarrow \quad I_n'' \quad \rightarrow \quad I_n' \quad \rightarrow \quad I_n \quad \rightarrow \quad I_n'' \quad \rightarrow \quad I_n' \]

Fig. 3. Transmission line reference directions

B. Node Equations

In addition to the propagation equations, we have in the frequency domain the terminals relations (see Fig. 3)

\[Y_n V_n - I_n = 2I_n', \quad (12a) \]

\[Y_n' V_n - I_n = 2I_n''. \quad (12b) \]

Assuming that the voltage at node \(m \) is known, the time domain realization for (12a) is (\(Y_n \) being fitted with rational functions)

\[\dot{x}_2 = A_2 x_1 + B_2 v_m, \quad (13a) \]

\[i_m = C_2 x_1 + D_2 v_m - 2i_m'. \quad (13b) \]

with their corresponding DHD counterpart given by

\[\dot{X}_3 = (A_2 - S')X_3 + B_2 V_m, \quad (14a) \]

\[I_m = C_2 X_3 + D_2 V_m - 2I_m'. \quad (14b) \]

where \(A_2, B_2, C_2, \) and \(D_1 \) are defined in accordance with (11a)-(11e). The reflected current is then updated with

\[I_m' = I_m' + I_m. \quad (15) \]

Similarly, from (12b) for node \(n \) we have in the DHD

\[\dot{X}_4 = (A_2 - S')X_4 + B_2 V_n, \quad (16a) \]

\[I_n = C_2 X_4 + D_2 V_n - 2I_n'. \quad (16b) \]

Considering a nonlinear load in parallel with a resistive load connected to node \(n \) (as shown in Fig. 4), the terminal voltage \(v_n \) can be eliminated from (16) by application of Kirchhoff Currents Law. First, let us assume that the total load current (linear and nonlinear) is given in the time domain by

\[i_n = -\alpha \Phi - \beta \Phi^p - v_n / R; \quad (17a) \]

with its counterpart in the DHD given by

\[I_n = -\alpha \Phi - \beta \Phi^p - V_n / R; \quad (17b) \]

where, for the nonlinear load we have assumed a current/flux polynomial relation and now in (17b) the power \(p \) is related with a convolution operation (see Appendix A). Then, substitution of (17b) into (16b) gives

\[V_n = k(-\alpha \Phi - \beta \Phi^p(C_2 X_4 + 2I_n')), \quad (18) \]

where \(k = R/(1+RD_1) \). Next, substituting (18) into (16a) and taking into account the voltage/flux relation in the DHD

\[\Phi + S\Phi = V_n, \quad (19) \]

one obtains the final relations for node \(n \) as follows:

\[\begin{bmatrix} \dot{X}_4 \\ \Phi \end{bmatrix} = \begin{bmatrix} A_2 - S' - kB_2 C_2 - kB_2(\alpha + \beta \Phi^p - 1) \\ -kC_2 - S - k(\alpha + \beta \Phi^p - 1) \end{bmatrix} \begin{bmatrix} X_4 \\ \Phi \end{bmatrix} + 2A_2 \begin{bmatrix} B_2 \\ I_b \end{bmatrix} I_n', \quad (20a) \]
\[I_n = \frac{1}{R} \left[kC_2 (k - R)(\alpha + \beta \Phi^{(p+1)}) \right] X_4 \Phi - \frac{2k}{R} I_n^r . \tag{20b} \]

Finally, after calculating \(I_n \) from (20), the reflected current is updated with
\[I_n^r = I_n^r + I_n . \tag{21} \]

In the case of a network with several transmission lines, the procedure described above could be used [14]. The incident currents are calculated for each line using an expression similar to (10). The solution for each load node can be calculated by using the nodal elimination as in (20). Finally, the reflected currents are updated.

IV. EXAMPLE

Consider the network shown in Fig. 5. It consists of three transmission lines having a resistive load at bus 2 \((Z_1)\) and identical linear/nonlinear loads (as specified by (17a) and depicted in Fig. 4) that are connected at buses 3 and 4 with \(R = 1 \times 10^3 \) ohms, \(\alpha = 1/10 \), and \(\beta = 5 \times 10^5 \). For simplicity, the lines are considered identical with 100 km of length, conductor radius equal to 0.0254 m, 15 m height, and earth resistivity equal to 100 ohm-m.

Initially, zero initial conditions are assumed with \(\text{sw}_1 \) open, \(\text{sw}_2 \) and \(\text{sw}_3 \) closed. Then, at \(t = 0 \) \(\text{sw}_1 \) is closed and at \(t = 0.023 \) s \(\text{sw}_2 \) is opened and it remains opened during the whole observation time. The results from the DHD are compared with those obtained from the direct simulation of the system of nonlinear equations in the time domain (labeled as TD in Figs. 6-8) using a predictor-corrector type method.

For this example, we have taken a polynomial of order \(p = 3 \) for (17a) and 17 harmonics, positive and negative, are being considered.

Fig. 5 shows the instantaneous voltage and its harmonic content for bus 2 where the difference (in the voltage waveform) between the simulation of the original ODEs and the one from the DHD is almost unnoticeable. One can notice from Fig. 6a the transient waveforms when closing \(\text{sw}_1 \) and when opening \(\text{sw}_2 \). Accordingly, Fig. 6b shows the harmonics behavior during the whole observation time. In Fig. 6b the harmonics oscillate with power frequency. The attenuation of these oscillations is not noticeable given the very low damping of the system under study. If there was a very large damping the harmonic plots would become horizontal lines in Fig. 6b. This would denote that the steady state was reached very fast.

The voltage, load current and the corresponding harmonics at bus 4 are shown in Figs. 7 and 8. Similar observations can be concluded as in the preceding paragraph.
It should be mentioned that although the direct time domain (TD) simulation takes much less time than the DHD, the harmonic dynamics needs an additional processing procedure to be followed, such as using WFFT.

In Fig. 9 the active, apparent, and distortion powers for bus 4 are presented. We have used the expressions given in [13] for this calculations. The remaining of the power quality indices can be calculated using those formulae but are not shown here.
In this paper a methodology for handling a system consisting of transmission lines and nonlinear loads has been proposed. The methodology takes aim into the dynamic harmonic domain which permits to follow step-by-step the harmonic evolution with respect to time. Its validation is made here through the original ODEs. Although the proposed methodology has been described for single-phase lines, it can be extended for the multi-phase case in a straightforward manner. The proposed technique is intended for contributing in the study of harmonics in transient state.

VI. APPENDIX A (NONLINEAR LOAD IN THE DHD)

Consider the time domain representation of a nonlinear load given by the flux/current relation \(i(t) = f(\varphi) \). Such nonlinear relation can be expressed in general as a polynomial of the type [14]

\[
i = \alpha \varphi + \beta \varphi^p.
\]

(22)

In the DHD, we have a relation similar to (22) where \(i \) and \(\varphi \) now become harmonic vectors as in (4a). The term \(\varphi^p \) is calculated by harmonic convolution (denoted here with the symbol \(\otimes \)) [13]. For instance,

\[
\Phi^2 = \Phi \otimes \Phi = T_o \Phi,
\]

(23a)

where:

\[
T_o = \begin{bmatrix}
\varphi_1 & \varphi_{-1} & \cdots & \varphi_{-p} \\
\varphi_1 & \varphi_0 & \cdots & \varphi_{-p} \\
\varphi_2 & \varphi_0 & \cdots & \varphi_{-p} \\
\vdots & \vdots & \ddots & \vdots \\
\varphi_p & \varphi_{p-1} & \cdots & \varphi_0
\end{bmatrix}
\]

(23b)

It can easily be shown that

\[
\Phi^p = \Phi \otimes \cdots \otimes \Phi = T_o^{p-1} \Phi.
\]

(23c)

VII. REFERENCES

VIII. BIOGRAPHIES

J. Jesus Chavez received his B.Sc. from the University of Guadalajara, Guadalajara, Mexico, in 2003, the M.A.Sc. from the Center for Research and Advanced Studies of Mexico (CINVESTAV) Campus Guadalajara, in 2006. He is currently pursuing his Ph.D degree at CINVESTAV. His interests are electromagnetic transient analysis in power systems and the dynamic harmonic domain applying to electronics devices in power systems.

Abner Ramirez received his B.Sc., M.A.Sc. and Ph.D. from University of Guanajuato, Mexico, in 1996, University of Guadalajara, Mexico, in 1998 and from the Center for Research and Advanced Studies of Mexico (CINVESTAV) Campus Guadalajara, in 2001, respectively. He was a postdoctoral fellow in the Department of Electrical and Computer Engineering of the University of Toronto from November 2001 to January 2005. Currently, he is a Professor at CINVESTAV-Guadalajara. His interests are electromagnetic transient analysis in power systems and numerical analysis of electromagnetic fields.

Jose Luis Naredo received the Electrical and Mechanical Engineering degree from Universidad Anahuac, Mexico, in 1983, and the M.A.Sc. and Ph.D. degrees from the University of British Columbia, Canada, in 1987 and 1992, respectively. In May 1997, he joined the Faculty of the Center for Research and Advanced Studies of Mexico (CINVESTAV) Campus Guadalajara. Since February 2005 he is the director of Cinvestav, Campus Queretaro. His research interests include electromagnetic transient analysis in transmission lines, telecommunications in power systems and digital protections.